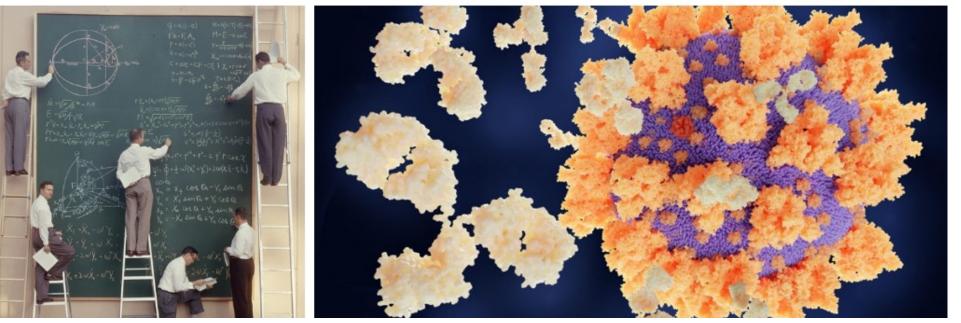
Toward a Computational Precision Medicine

Mickaël Guedj



Background

	1999 - 2004	INSA Lyon		
	2004 - 2007	PhD at <u>Genopole</u> / <u>Merck-Serono</u>		
9	2007 - 2009	<i>Computational Biologist</i> <u>Ligue Nationale contre le Cancer</u>	\times	mickael.guedj@gmail.com
	2009 - 2018	Chief Data Officer <u>Pharnext</u>	in	https://www.linkedin.com/in/mickaelguedj
	2018 - 2021	<i>Head of Computational Medicine</i> <u>Servier</u>		
	since 2021	Head of Biometrics, Data & Decision Sciences <u>Nanobiotix</u>		

2005 - 2011

ENSAI Rennes

Principles

Computational Precision Medicine

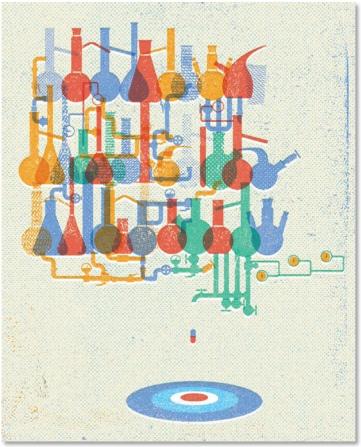
Integrate understanding of disease mechanisms & patient heterogeneity

By opposition to *one-size-fits-all*

Highly data & model-driven

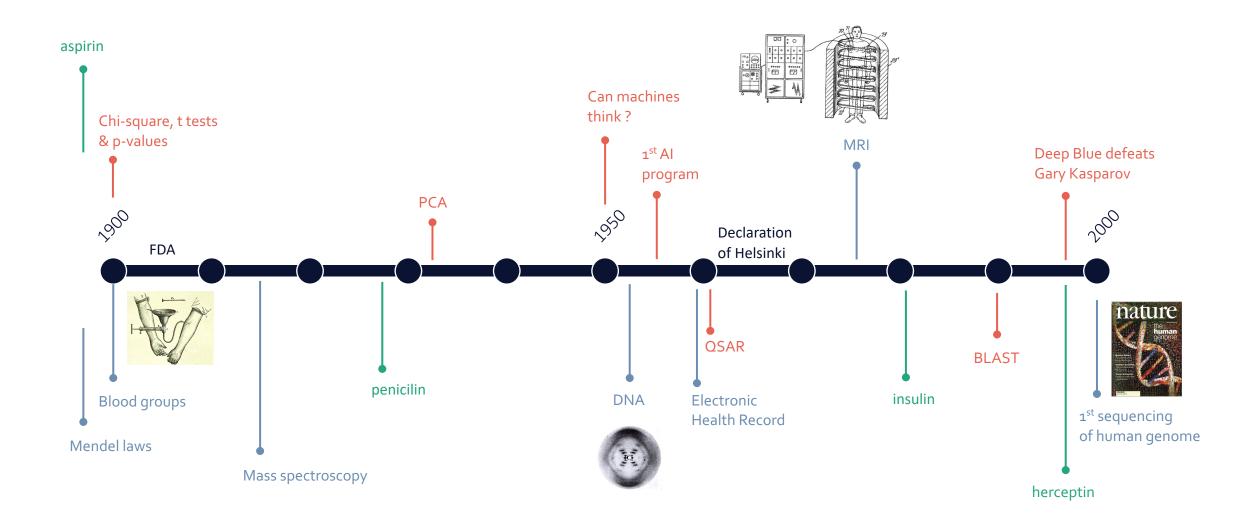
Related

Stratified, Integrated, Systems, Network, In Silico, Digital,Data-driven, Translational4P: Predictive, Preventive, Personalized & Participative

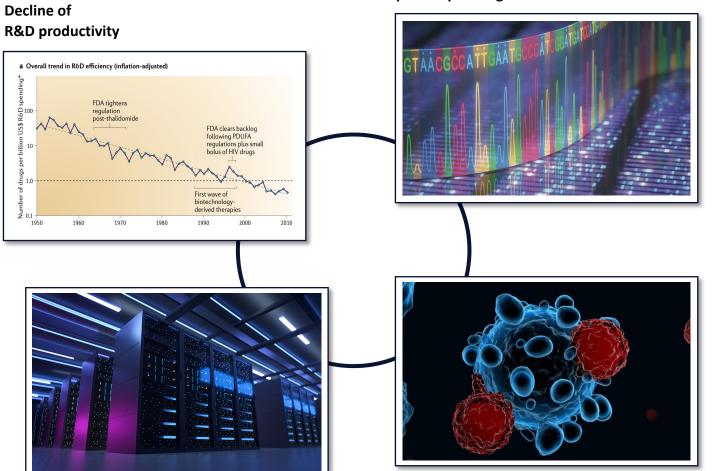


Credit: Lorenzo Gritti

Brief history



Since 2000



Large-scale & multimodal patient profiling

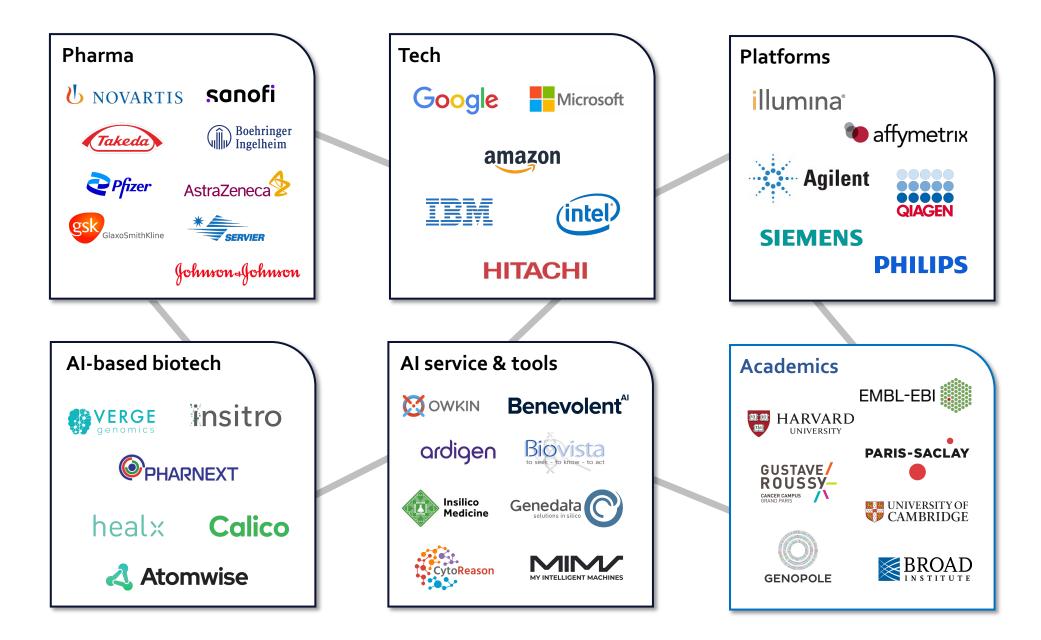
Data storage, access & treatment capacities

Diversification of therapeutic strategies

Data-driven decision making in drug discovery & development

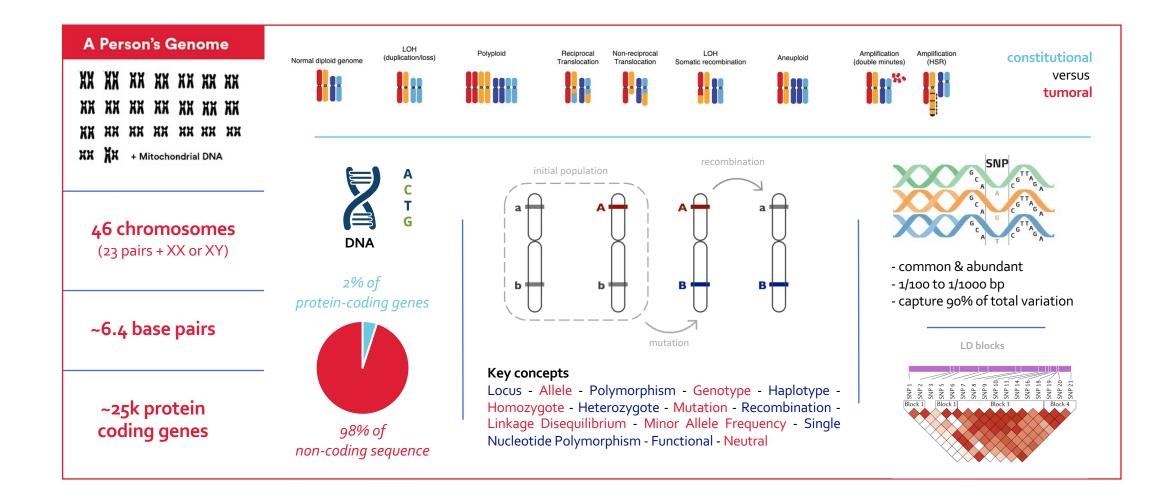
	Research	📫 🖓 🖾 Develop	oment	Launch			
	Target to hitHit to leadLeadOptimization	Preclinical	Clinical	Registration Post marketing			
Data sources	 Multi-omics profiling of patients Genome-wide association studies, whole-genome sequencing Gene and protein interactomes High-content screening assay Drug databases Structure-activity relationship 	 Preclinical characterization PK/PD modeling ADMET Quality attributes of drug candidates 	 Data from clinical trials (successful or failed) Profiling of responders versus nonresponders 	 Real-world efficacy Pharmacovigilance 			
Predictive models	 Disease modeling, patient stratification Systems Biology, pathway and network analysis with inference of causality Molecular interactions (prediction of binding and pharmacological activity) 	 Prediction of ADMET Prediction of stability, efficacy, and safety Quality by design for manufacturing 	 Prediction of drug positioning Prediction of combination therapies Virtual patients and placebo groups In silico studies 	- Evaluation of drug performance (safety, efficacy) in real life			
Key decisions	 Selection of therapeutic targets Selection and optimization of candidate molecules Repurposing of existing molecules 	 Selection of modality, formulation, dose, route of administration, regimen Design of manufacturing 	 Selection of patients Selection of biomarkers Study design Positioning of drug candidates relative to competitors 	 Strategy for life-cycle management Extension of indication Strategy for market access (pricing, reimbursement) 			

Industrial ecosystem

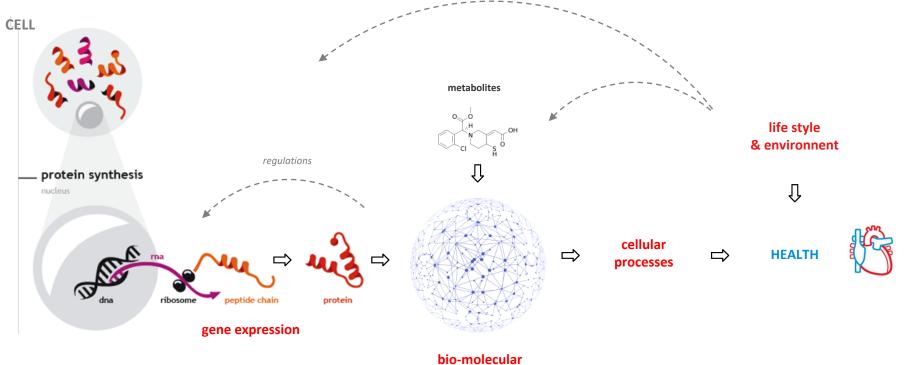


Data

Genetics as a key entry

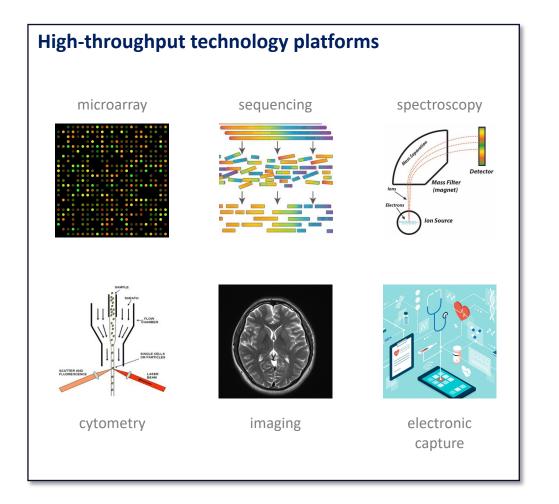


Health as equilibrium of connected systems

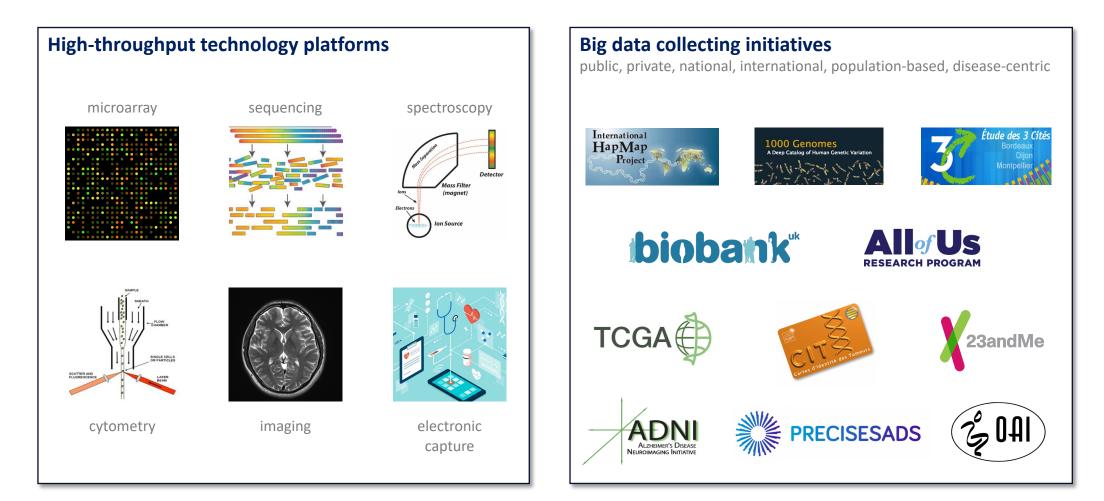


networks / pathways / interactome

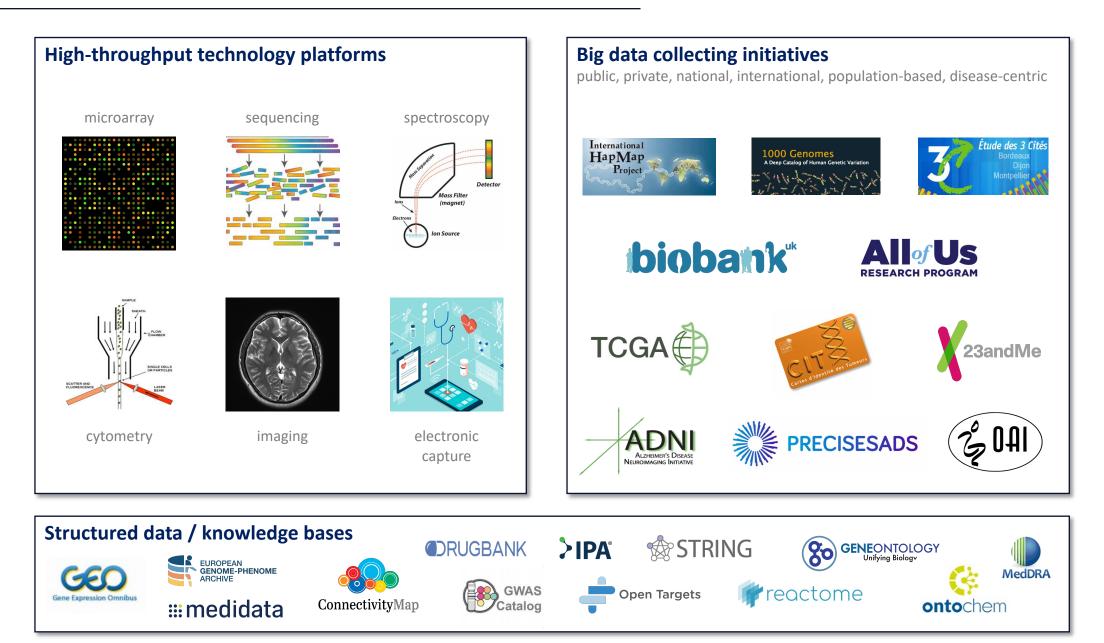
Capturing the value of big biomedical data



Capturing the value of big biomedical data

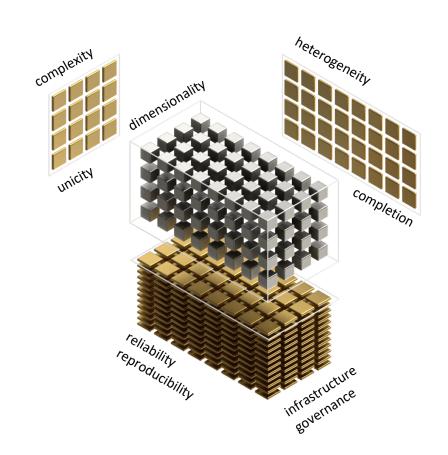


Capturing the value of big biomedical data

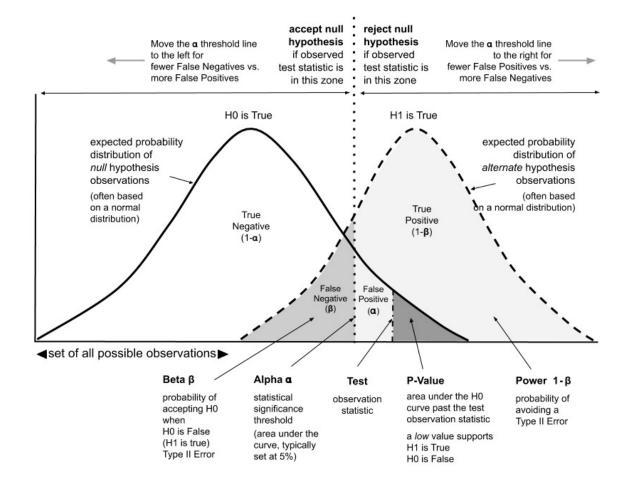


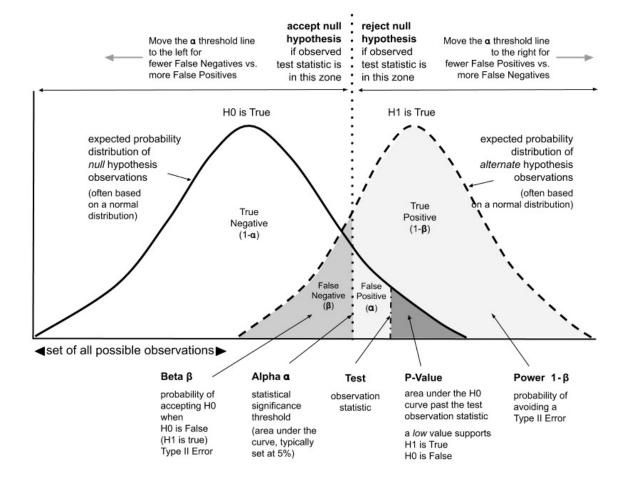
Data-associated challenges

Emerging standards & guidance



Computational tool box

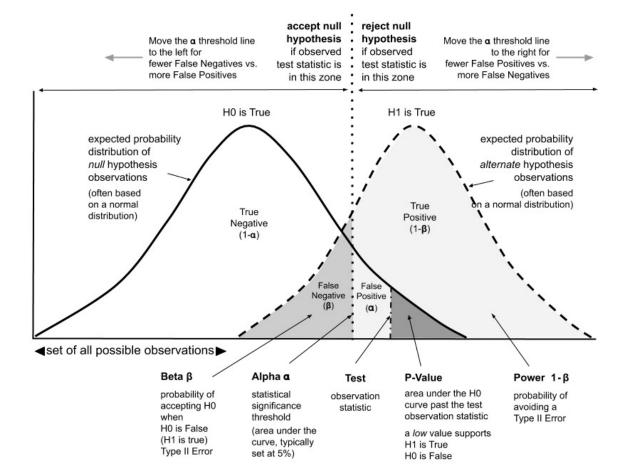




Multiple-testing

- FWER, FDR, q-value, local FDR

- Bonferroni, Benjamini-Hochberg

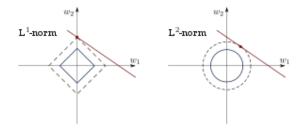


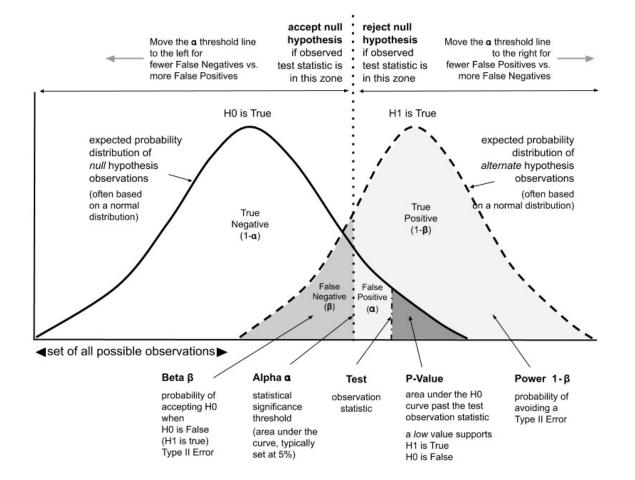
Multiple-testing

- FWER, FDR, q-value, local FDR
- Bonferroni, Benjamini-Hochberg

Model estimation & variable selection

- Ridge, LASSO, Elastic Net

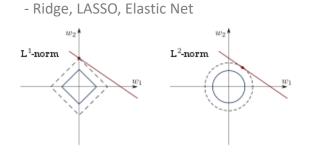




Multiple-testing

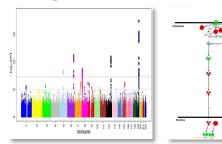
- FWER, FDR, q-value, local FDR
- Bonferroni, Benjamini-Hochberg

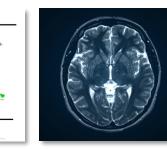
Model estimation & variable selection



Spatiality

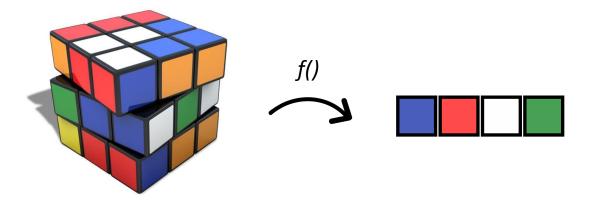
- sliding-window, local score, enrichment



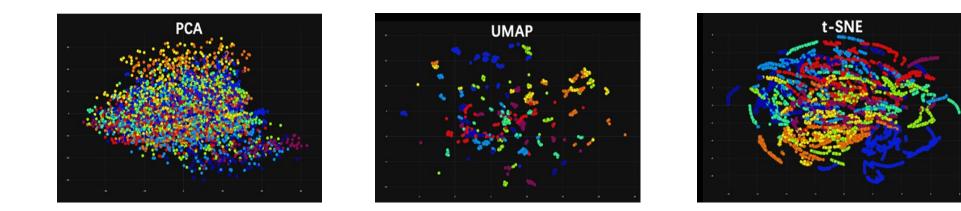


Dimension reduction

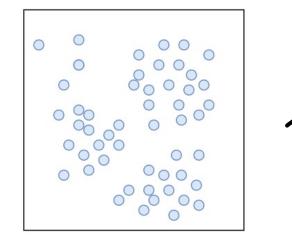
Transformation of data from a high-dimensional space into a lowdimensional space so that it retains some meaningful properties

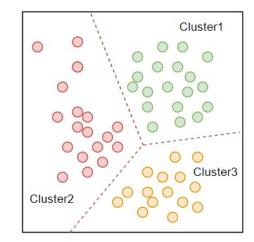


Principal Component Analysis (PCA)
Uniform Manifold Approximation and Projection (UMAP)
t-distributed stochastic neighbour embedding (t-SNE)
Auto-encoders

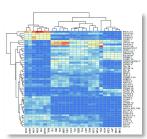


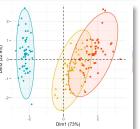
Unsupervised classification / clustering

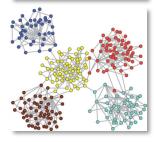




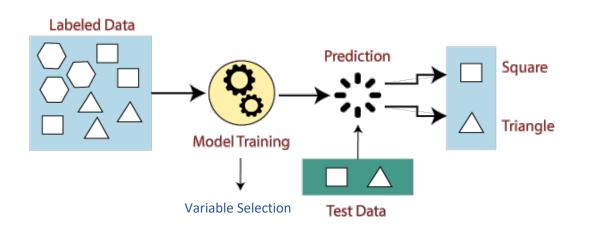
- Connectivity approach Hierarchical clustering
- Centroid approach K-means
- Distribution approach Gaussian mixture models
- Graph-based approach WGCNA
- Decomposition approach Spectral clustering
- Neural networks Self-organizing map



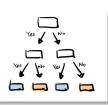


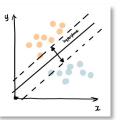


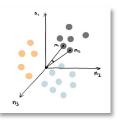
Supervised classification



- Logistic regression
- Decision tree, random forests
- Naïve bayes classifier
- Support vector machine
- K-nearest neighbour
- Neural networks



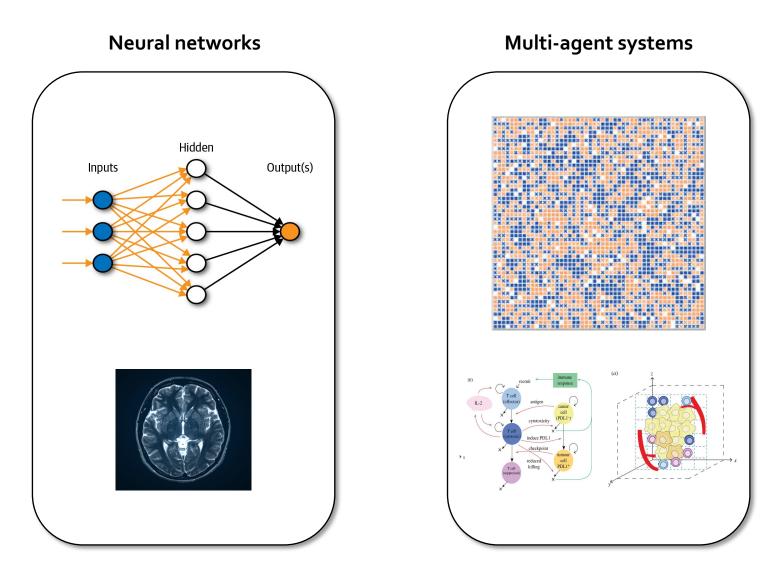




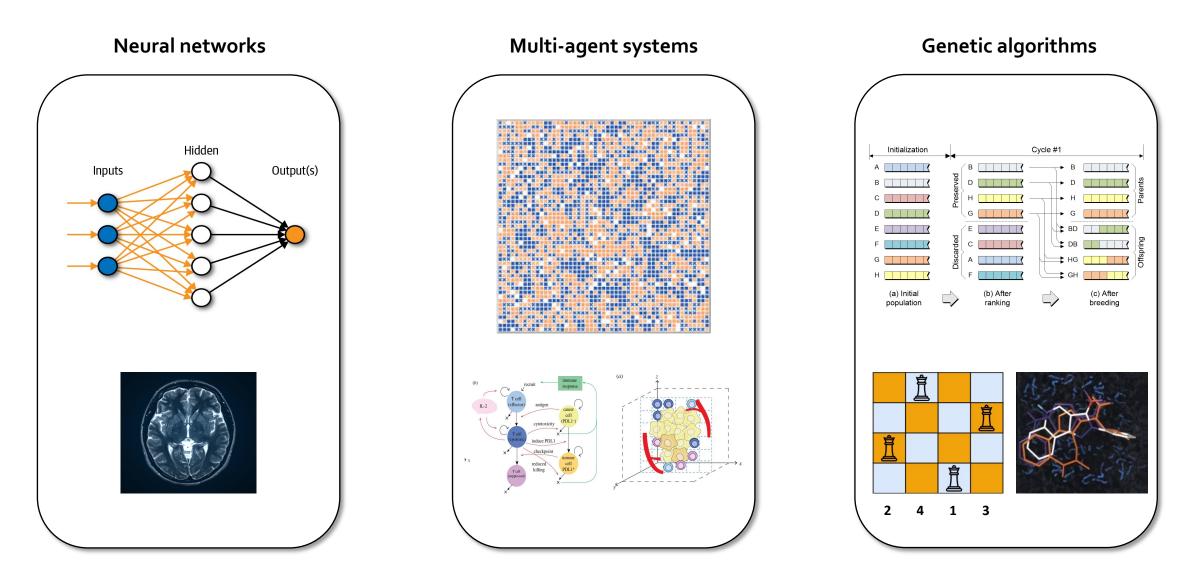
Bio-inspired algorithms

Neural networks Hidden Output(s) Inputs

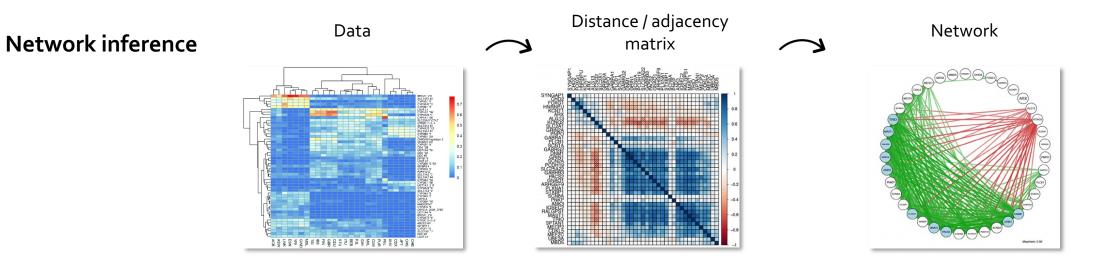
Bio-inspired algorithms

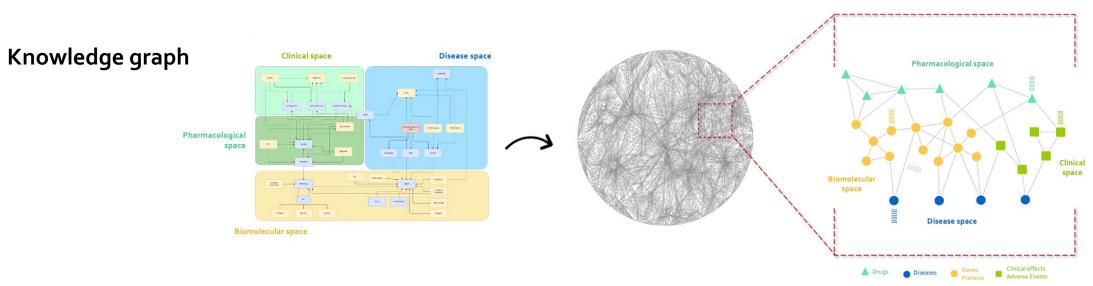


Bio-inspired algorithms

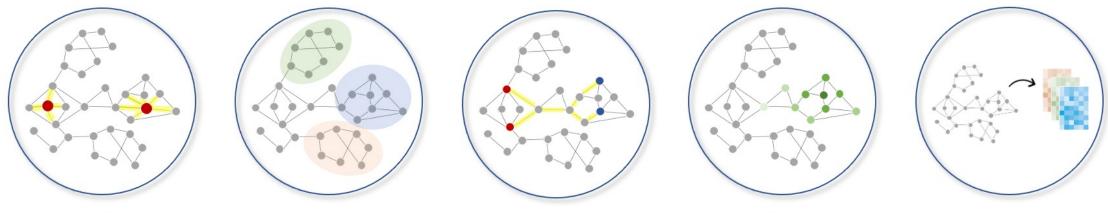


Network reconstruction





Network analysis



Clusters

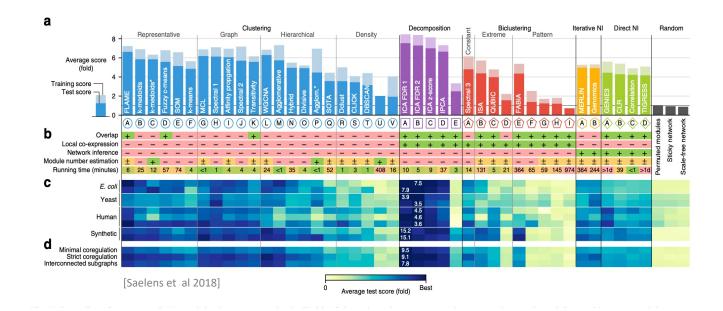
Distance

Diffusion

Deep learning

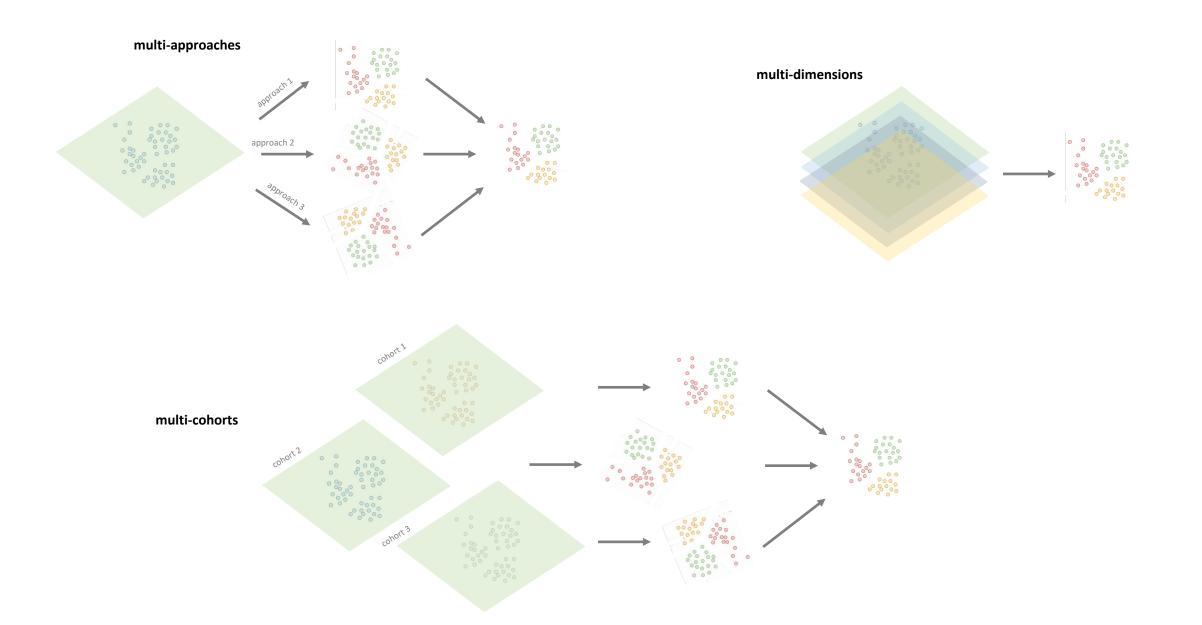
Need for benchmarks

Comparison studies



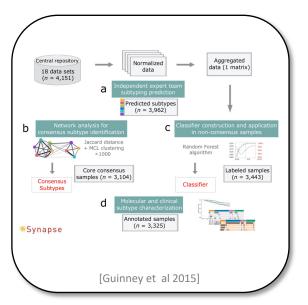
Data challenges

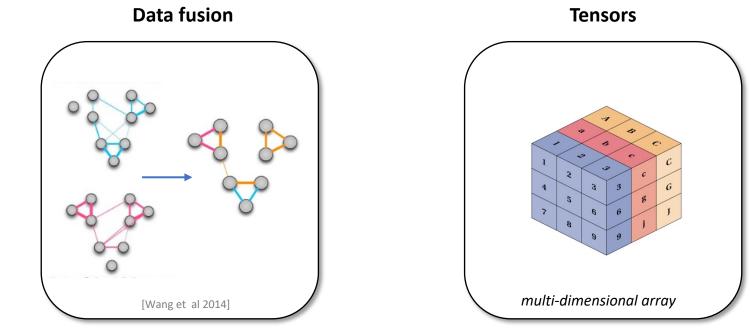
Integration of multi-sources



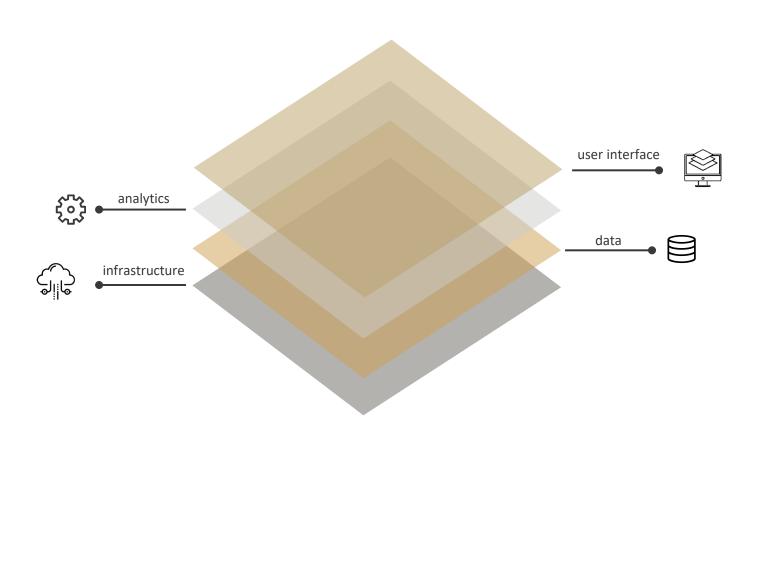
Integration of multi-sources

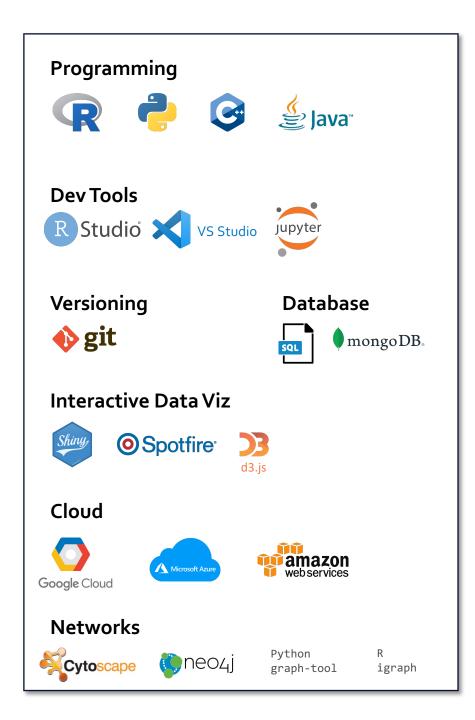
Consensus



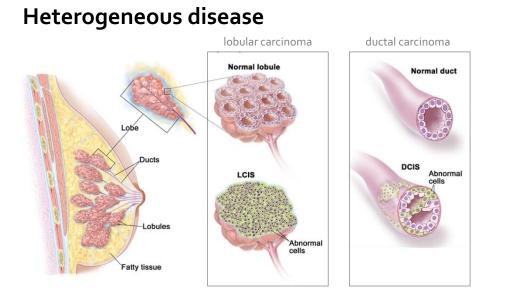


All-in-one computing platform





Applications



RAD51 Cytoplasm Α BRCA1 RAD51 recombinase RAD51 BRCA2 Nucleus DNA Repair by HR

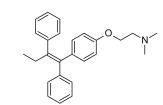
Genetic predisposition

Standard therapeutic strategies

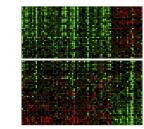
- Surgery
- Chemo
- Radio

Pioneer in Computational Precision Medicine

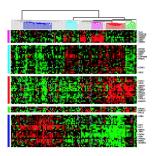
1998: herceptin



1998: tamoxifen

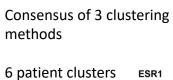


2002 : 1st prognostic signature (van 't Veer et al | MammaPrint approved by FDA)



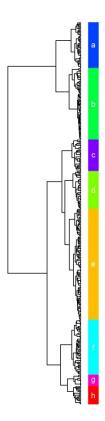
2003: 1st molecular classification (Sorlie et al)

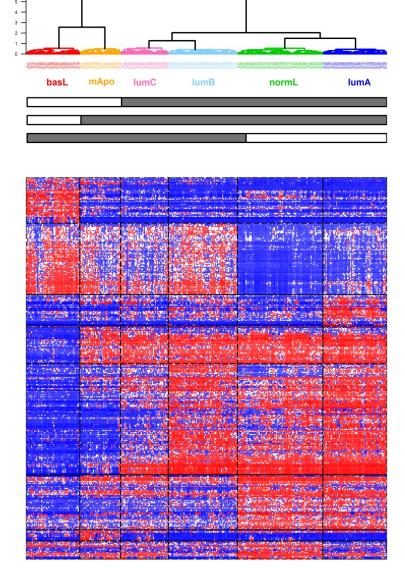
33

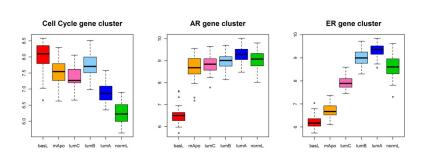


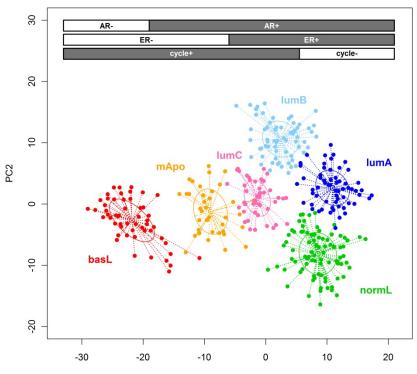
8 gene modules AR Cycle

500 patients



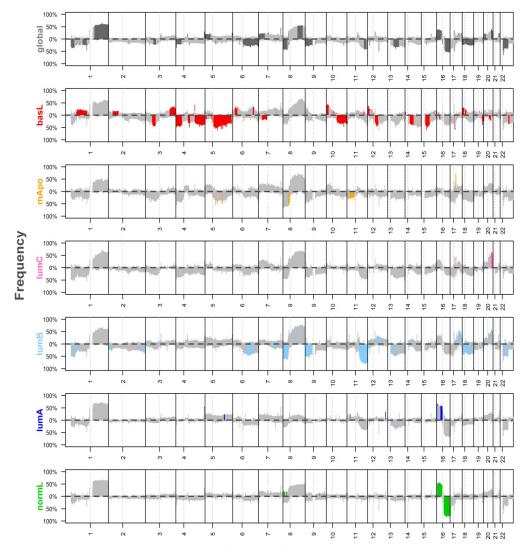






			CIT class	ification			
Variable	pv	BasL	mApo	LumC	LumB	LumA	NormL
Total		53	39	48	66	61	88
ER + (IHC)	1.00E-50	5 (10%)	1 (3%)	37 (84%)	63 (98%)	58 (97%)	81 (93%)
ER - (IHC)		46 (90%)	35 (97%)	7 (16%)	1 (2%)	2 (3%)	6 (7%)
ER + (EXP)	6.00E-68	3 (6%)	2 (5%)	48 (100%)	66 (100%)	61 (100%)	87 (99%)
ER - (EXP)		50 (94%)	37 (95%)	0 (0%)	0 (0%)	0 (0%)	1 (1%)
$\frac{PR + (IHC)}{PR - (IHC)}$	2.00E-25	4 (8%) 48 (92%)	1 (3%) 34 (97%)	25 (54%) 21 (46%)	43 (67%) 21 (33%)	53 (88%) 7 (12%)	62 (71%) 25 (29%)
PR + (EXP)	1.00E-37	5 (9%)	5 (13%)	32 (67%)	47 (71%)	58 (95%)	85 (97%)
PR - (EXP)		48 (91%)	34 (87%)	16 (33%)	19 (29%)	3 (5%)	3 (3%)
$\frac{\text{ERBB2} + (\text{IHC})}{\text{ERBB2} - (\text{IHC})}$	9.00E-19	3 (7%) 43 (93%)	19 (68%) 9 (32%)	10 (26%) 28 (74%)	5 (11%) 41 (89%)	0 (0%) 37 (100%)	0 (0%) 74 (100%)
$\frac{\text{ERBB2} + (\text{EXP})}{\text{ERBB2} - (\text{EXP})}$	4.00E-31	2 (4%) 51 (96%)	29 (74%) 10 (26%)	20 (42%) 28 (58%)	2 (3%) 64 (97%)	0 (0%) 61 (100%)	5 (6%) 83 (94%)
AR + (EXP)	2.00E-57	2 (4%)	32 (82%)	47 (98%)	63 (95%)	61 (100%)	88 (100%)
AR - (EXP)		51 (96%)	7 (18%)	1 (2%)	3 (5%)	0 (0%)	0 (0%)
P53mut	1.00E-15	29 (83%)	13 (72%)	24 (69%)	5 (16%)	1 (4%)	1 (5%)
P53wt		6 (17%)	5 (28%)	11 (31%)	27 (84%)	27 (96%)	21 (95%)
Ductal	0.05	51 (98%)	32 (84%)	39 (87%)	54 (84%)	50 (83%)	61 (77%)
Lobular	0.004	1 (2%)	1 (3%)	3 (7%)	3 (5%)	5 (8%)	15 (19%)
Other	0.1	0 (0%)	5 (13%)	3 (7%)	7 (11%)	5 (8%)	3 (4%)
SBR Grade 1	8.00E-11	0 (0%)	0 (0%)	0 (0%)	0 (0%)	7 (12%)	23 (27%)
SBR Grade 2	2.00E-13	6 (11%)	8 (21%)	21 (47%)	38 (58%)	44 (77%)	53 (62%)
SBR Grade 3	4.00E-26	47 (89%)	30 (79%)	24 (53%)	28 (42%)	6 (11%)	9 (11%)
Age (median)	4.00E-07	50	56	54	57	62	52
MR 5year MR 15year	0.001 0.01	17 (36%) 17 (36%)	14 (38%) 14 (38%) 8 (57%)	11 (34%) 13 (41%) 7 (54%)	15 (26%) 18 (32%)	9 (20%) 10 (22%) 7 (70%)	6 (8%) 11 (15%)
Bones	0.01	4 (24%)	8 (57%)	7 (54%)	14 (78%)	7 (70%)	9 (82%)
Brain	0.06	5 (29%)	3 (21%)	1 (8%)	0 (0%)	0 (0%)	2 (18%)
Liver	0.7	5 (29%)	6 (43%)	7 (54%)	8 (44%)	3 (30%)	3 (27%)
Lung	0.9	6 (35%)	4 (29%)	6 (46%)	8 (44%)	3 (30%)	4 (36%)
Other		4 (24%)	1 (7%)	7 (54%)	8 (44%)	3 (30%)	3 (27%)

Genomic alterations



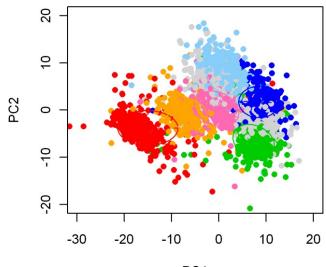
Category	Pathways	Bas-L	m-Apo	Lum-C	Lum-B	R-mul	Norm-L
Cell communication	Adherens junction Focal adhesion	-	-				
Motility	cell motility Regulation of actin cytoskeleton						-
Cell growth and death	Apoptosis Cell cycle p53 signaling pathway		1				
Replication and repair	Base excision repair DNA replication Mismatch repair Nucleotide excision repair						
Lipid metabolism	Androgen and estrogen metabolism Fatty acid metabolism						-
Endocrine system	GnRH signaling pathway Insulin signaling pathway Renin-angiotensin system	-					
Signal transduction	androgen receptor signaling Calcium signaling pathway ErbB signaling pathway estrogen receptor signaling mTOR signaling pathway Phosphatidylinositol signaling PTEN cell cycle arrest and apoptosis TGF-beta signaling Wnt signaling pathway						
Immune system	Antigen processing and presentation B cell receptor signaling Hematopoietic cell lineage Natural killer cell mediated cytotoxicity T cell receptor signaling Toll-like receptor signaling						

Pathways associations

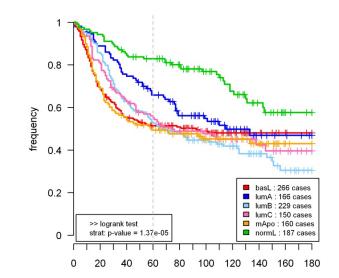
Genome location

Molecular classification of breast cancer

30 20 **Discovery set** 500 samples 5 PC2 10 20 -30 -20 -10 10 20 PC1 PC1 0.8 0.6 frequency 0.4 0.2 basL : 47 cases
 lumA : 45 cases IumB : 57 cases IumC : 32 cases mApo : 37 cases >> logrank test p-value = 0.0127 normL : 74 cases 0 0 20 140 160 180 40 60 80 100 120

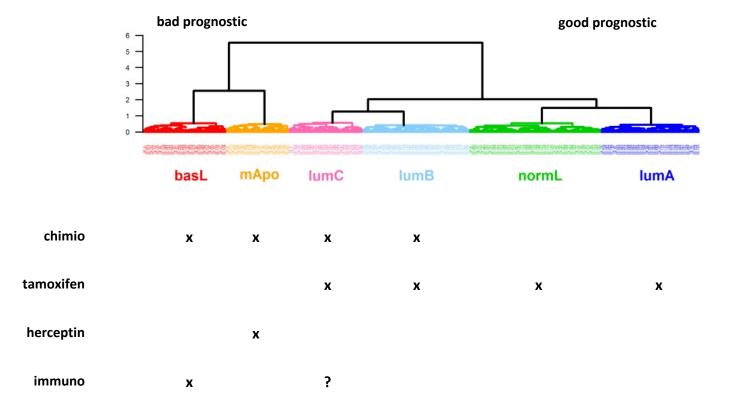


PC1

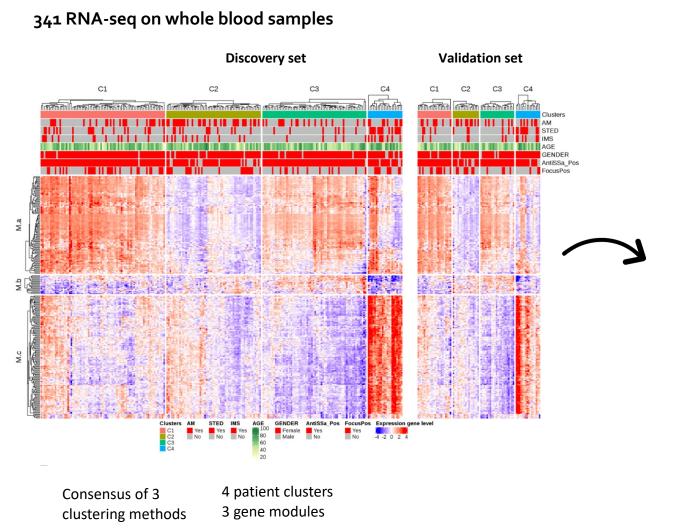


Validation set 3000 public samples

Molecular classification of breast cancer



Molecular classification of Sjögren



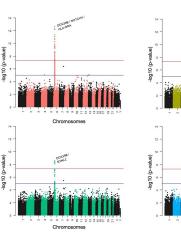
Multi-omics characterization

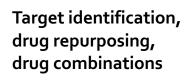
Canonical pathways & immunologic modules analysis

Chromosome

Chromosome

- Methylomics
- Flow cytometry / deconvolution
- GWAS





Molecular classification of Sjögren

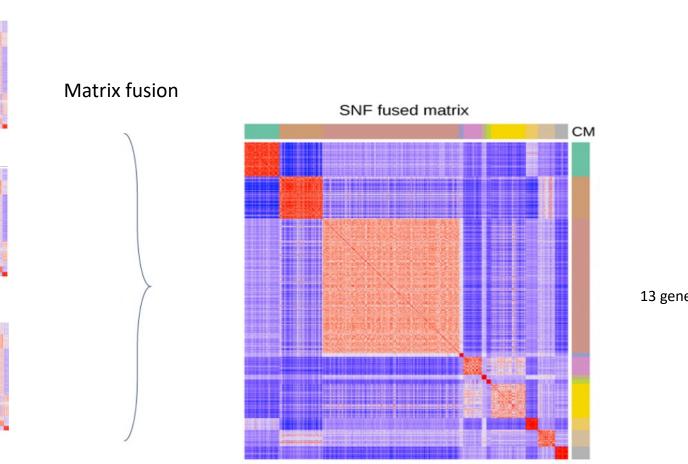
UKPSSR (n = 144)

PRECISESADS (n = 341)

ASSESS (n = 371)

GSE84844 (n = 30)

necessity



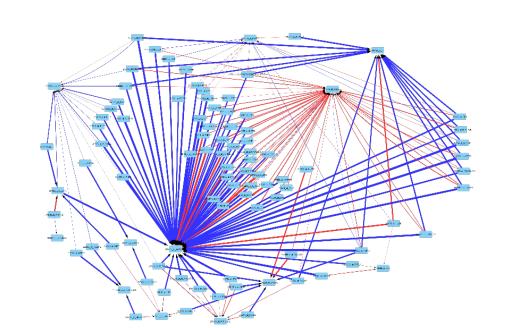
13 gene modules

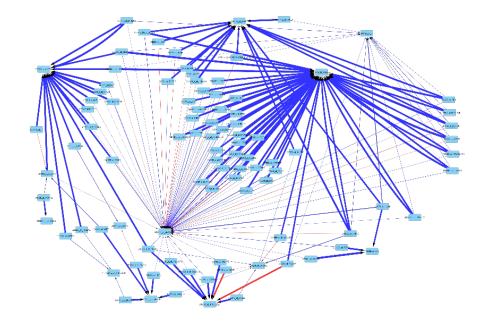
Université de Paris

[Boudjeniba et al, ongoing]

Molecular classification of Sjögren

SERVIER

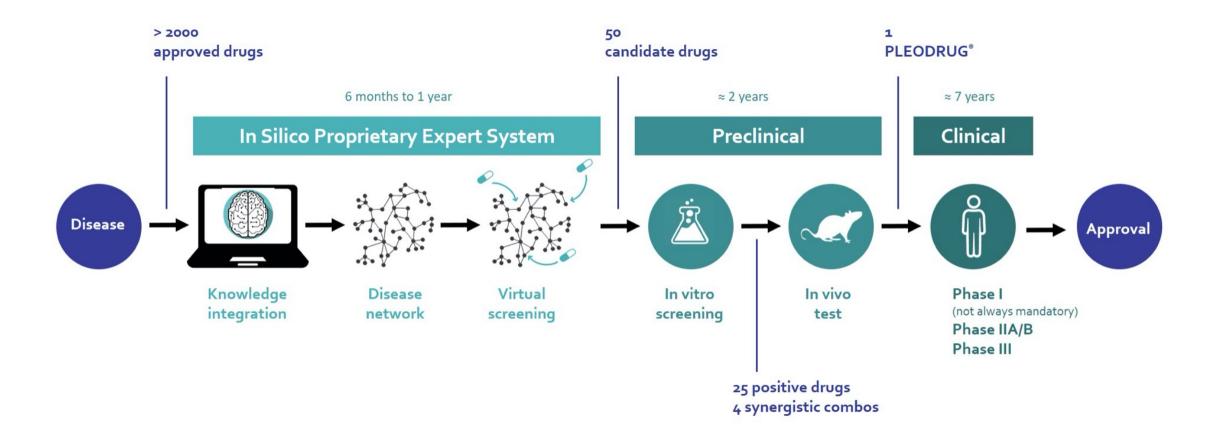




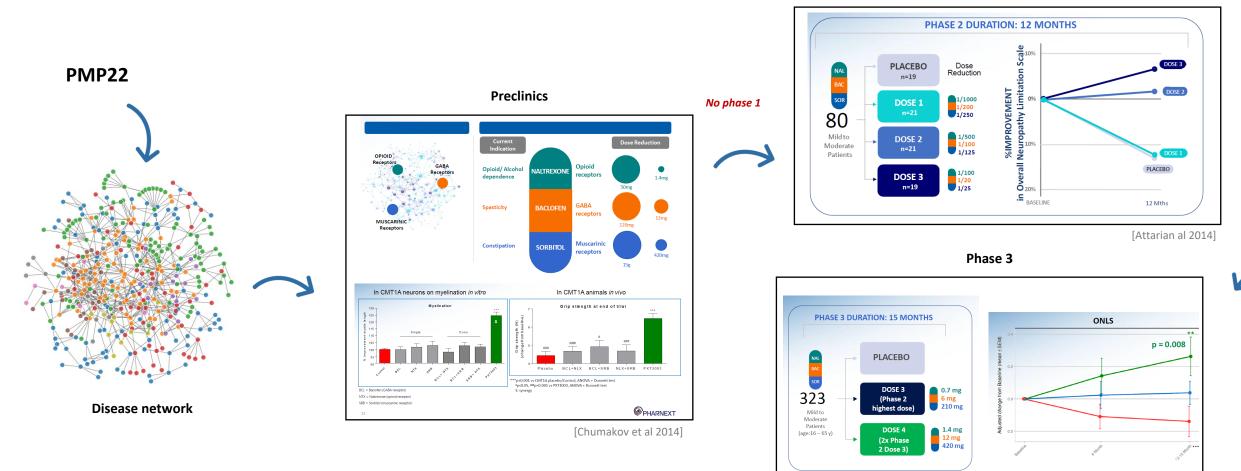
Sjögren

Control

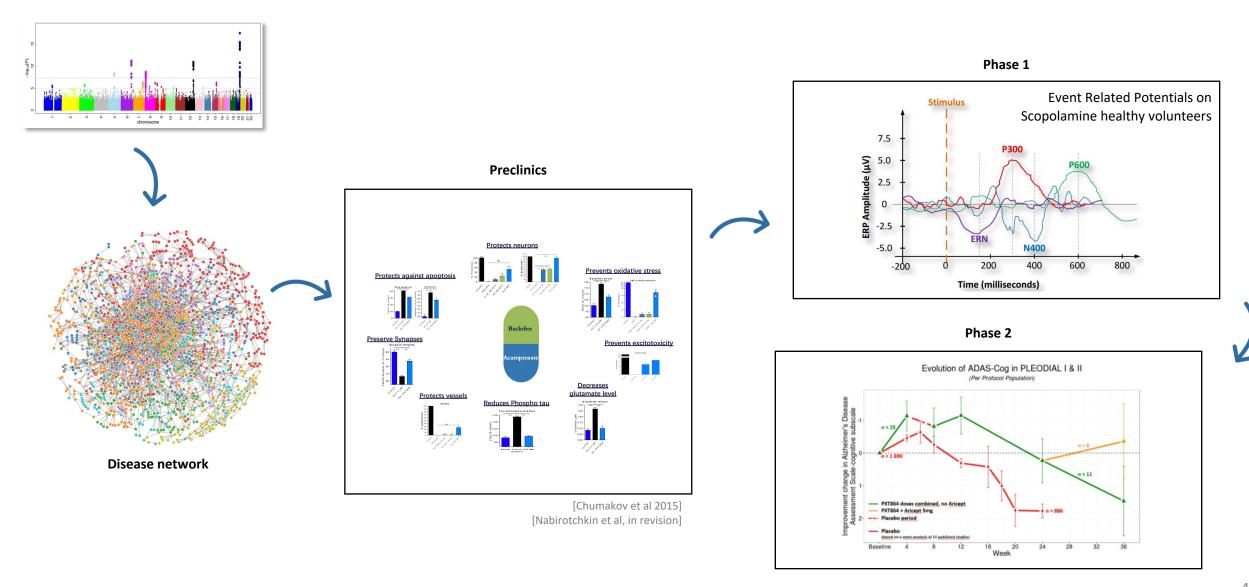
Combination of repurposed drugs

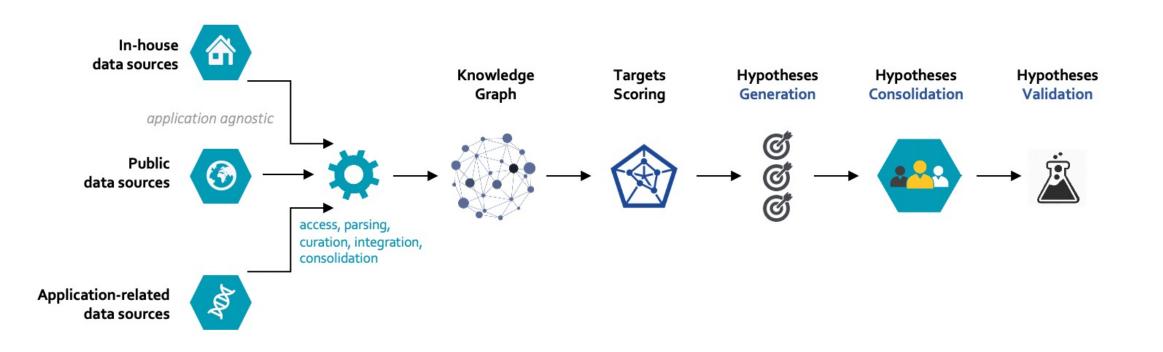


Application to CMT1A

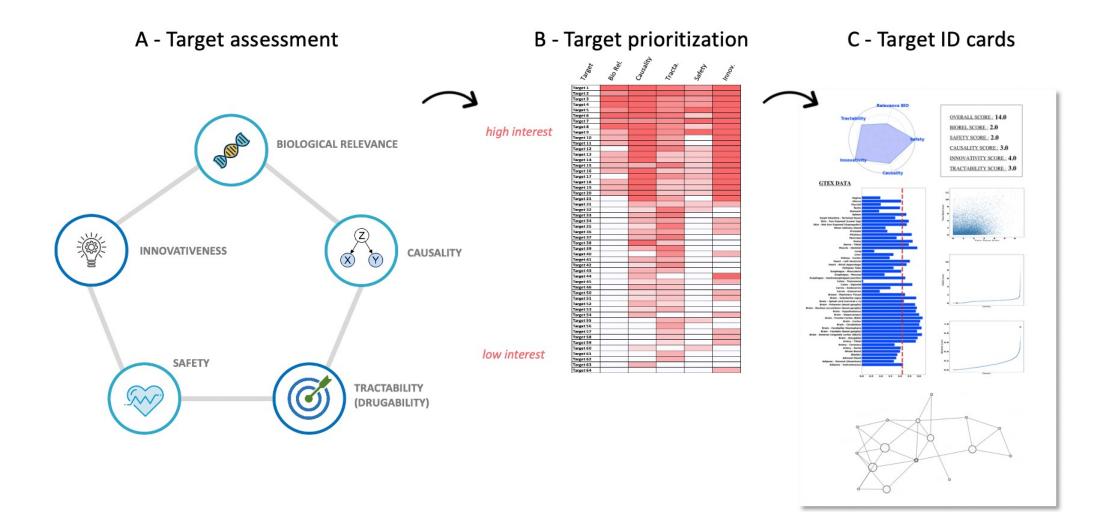


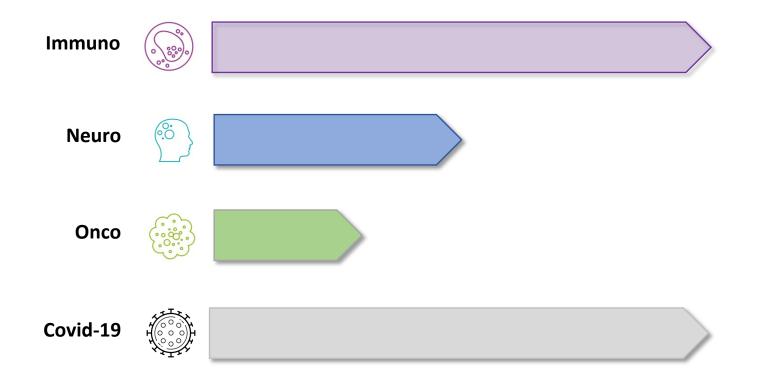
Direct to Phase 2





Patrimony





FINALISTE SERVIER Patrimony

R&D : l'IA au service de la recherche médicamenteuse

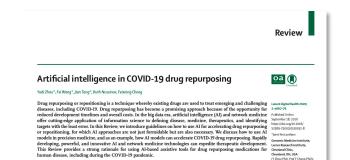
Prix Change 2020

La recherche médicamenteuse et le développement de nouvelles molécules est un processus long et coûteux. Pour y remédier, l'idée de Patrimony est de capitaliser sur le patrimoine de données « dormantes » de Servier et de faire parler ces données pour générer grâce au machine learning de nouvelles hypothàses thérapeutiques. Un projet jusqu'à lors irréalisable en partie en raison de contraintes informatiques et juridiques fortes, résolues grâce à la mise en place d'un environnement cloud sur mesure. Aujourd'hui, Patrimony intègre une trentaine de sources de données internes et externes et permet d'étudier plus de 200 000 interactions.

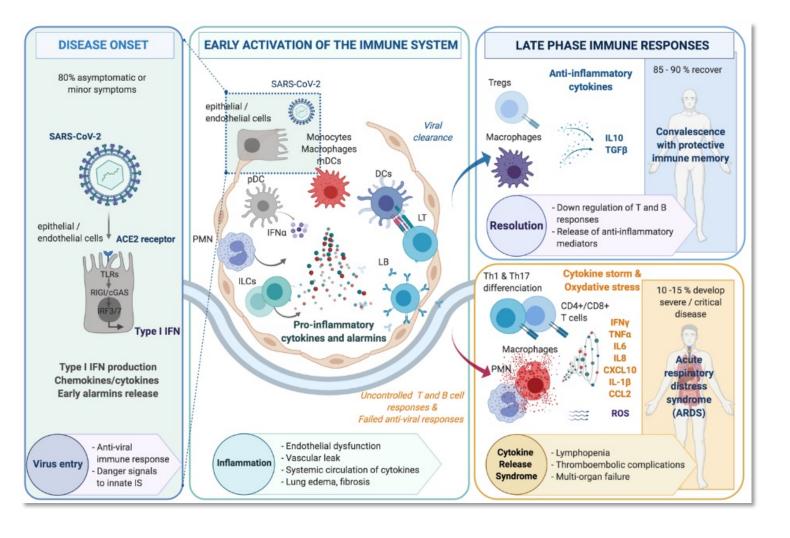
À la def, un gain de temps évident pour les biologistes et une pertinence des hypothèses générées garante. L'intérêt de cette approche computationnelle est aussi de pouvoir **couvrir un plus grand nombre de pathologies**, en se penchant sur des pathologies rares à moindre coût, et de **répondre plus rapidement à des évènements soudains** comme des épidémies. Car Patrimony cherche aussi à systématiser une démarche qui autrefois relevait du hasard ou de l'intuition heureuse d'un biologiste : le **repositionnement de médicaments**. Cette démarche de « **reuse** » présente l'énorme avantage de permettre une mise à disposition plus rapide auprès des patients puisque la molécule est déjà connue et une partie des essais cliniques déjà réalisée.

Patrimony est un projet dont l'industrialisation – du POC jusqu'à l'intégration dans les opérations « normales » de l'entreprise – a été pensée sur quatre ans. Une réelle ambition donc de **placer la médecine computationnelle au cœur des métiers de Servier** !

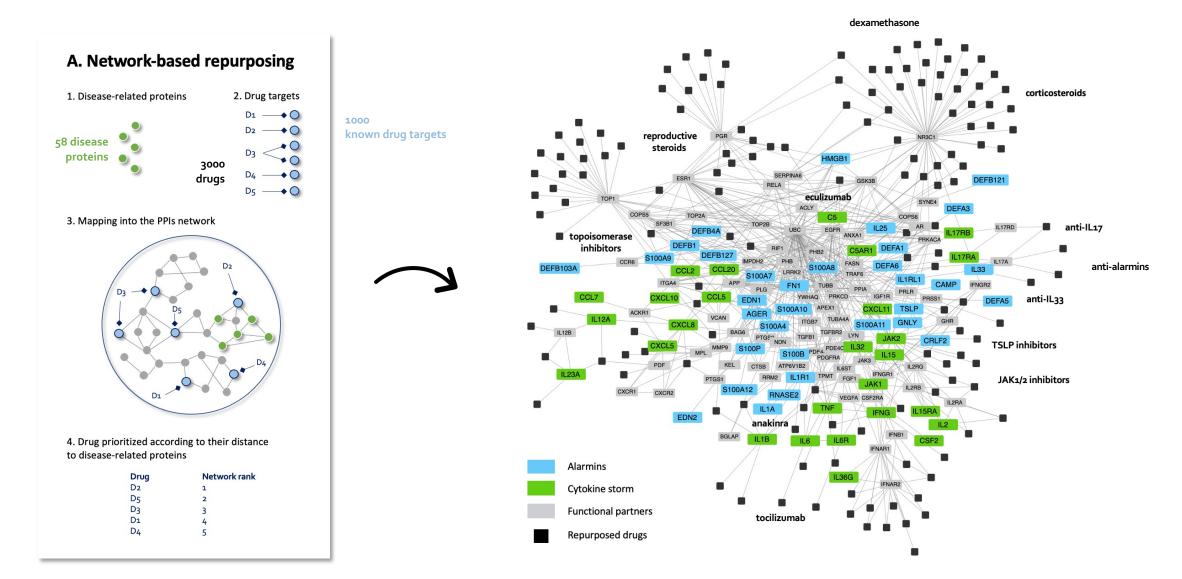
Patrimony, application to covid-19



Benevolent^{AI} >> baricitinib



Patrimony, application to covid-19



Concluding remarks

FROM THE ANALYST'S COUCH

AI in small-molecule drug discovery: a coming wave?

Madura K. P. Jayatunga, Wen Xie, Ludwig Ruder, Ulrik Schulze and Christoph Meier

programmes and preclinical assets, and

Artificial intelligence (AI) offers the potential to transform drug discovery. Over the last few years, AI-enabled drug discovery has grown substantially through technological progress, such as the use of neural networks to design molecules and the application of knowledge graphs to understand target biology.

Several AI-native drug discovery companies have progressed molecules into clinical trials, in some cases reporting greatly accelerated timelines and reduced costs, raising high expectations in the R&D community. In addition, many established pharmaceutical companies have formed discovery partnerships with AI companies to explore the technology. Despite this progress, it is still early days for AI in drug discovery, with many open questions about its impact and future potential.

We see several dimensions for AI to create value in drug discovery, including greater productivity (faster speed and/or lower cost), broader molecular diversity and improved chances of clinical success. Here, we present an analysis of the impact of AI along these dimensions using publicly available data. We focused mainly on small-molecule drug discovery, for which AI approaches are relatively more established.

Impact in small-molecule drug discovery Pipeline growth. We focused our analysis on 24 'AI-native' drug discovery companies, for which AI is central to their discovery strategy (see Supplementary information for a list and analysis strategy). For a subset of 20 of these companies, we were able to reconstruct their pipelines between 2010 and 2021 using public databases. During this time, AI drug discovery companies had rapid pipeline growth, with an average annual growth rate of around 36%. This is driven mainly by assets and programmes at the discovery and preclinical stage (FIG. 1a), reflecting the early-stage nature of AI-native companies. Today the combined pipeline of these 20 AI companies contains ~160 disclosed discovery programmes and preclinical assets

and about 15 assets in clinical development. For comparison, the combined in-houseoriginated pipeline of the top 20 pharma

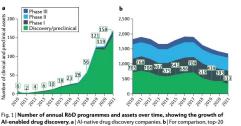
NEWS & ANALYSIS

G-protein-coupled receptors also make up companies contains ~330 disclosed discovery a high proportion.

~430 assets in phase I clinical development This strong emphasis on well-established (using the same public data sources and targets as appropriate testing grounds could excluding partnered assets or programmes; be driven by multiple factors, including FIG. 1b). So, AI companies appear to have a desire to de-risk internal pipelines by focusing on targets with validated biology. a combined pipeline equivalent to 50% of the in-house discovery and preclinical output to prove the viability of their technology of 'big pharma'. Even if we assume underplatforms and to address well-known reporting of discovery programmes and challenges such as selectivity issues for preclinical assets by pharma companies well-characterized targets with rich data and over-reporting by AI companies, this (often including structural information). In contrast, top-20 pharma companies tend seems an impressive picture. Nevertheless, it remains to be seen how many of the to have pipelines that balance both emerging AI-enabled preclinical programmes reach and established target classes (FIG. 2a). the clinical trial stage, and how successful Despite these trends, there are some AI-derived assets will be in clinical trials. reported examples of potential first-in-class AI-derived compounds for novel targets,

Pipeline composition of AI drug discovery including protein tyrosine phosphatase companies. We further analysed the current pipelines of the full list of 24 AI-native drug MALT1, for which AI-derived compounds discovery companies with regards to theraare among the first for which first-in-human peutic areas and target classes. Detailed tarstudies or studies to enable an investigational get information was available for only about new drug (IND) application have been a quarter of AI-enabled R&D programmes initiated (see Supplementary information and assets, but analysis of this partial datafor details) set suggests that AI-native drug discovery In terms of therapy area, most of the companies often focus on well-established

disclosed AI discovery programmes and target classes (FIG. 2a). For example, more assets are in the oncology and central nervous than 60% of all disclosed targets of AI comsystem areas, probably due to the high unmet panies are enzymes such as kinases, and medical need and many well-characterized other well-known drug target classes such as targets (FIG. 2b).



pharma companies. See Supplementary information for details.

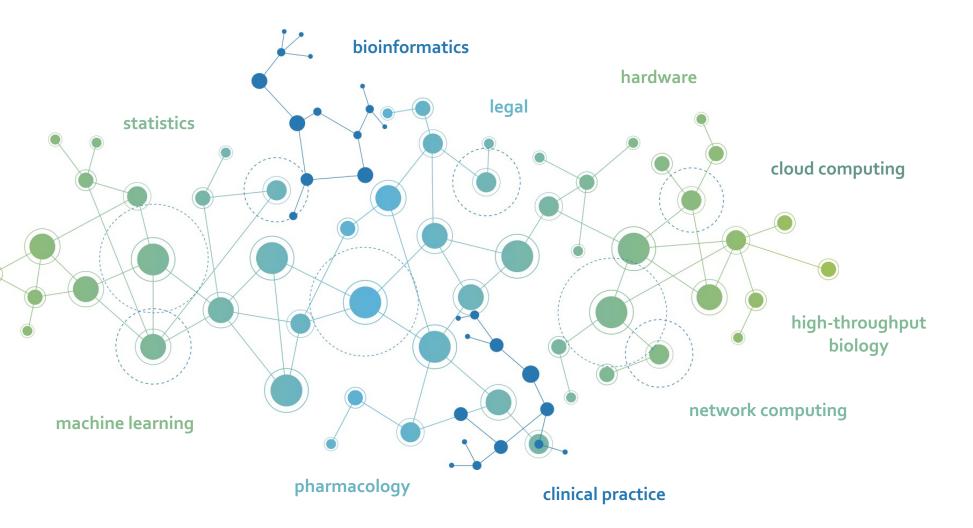
VOLUME 21 | MARCH 2022 | 175

SHP2, DNA helicase WRN and paracaspase

- less patients in clinical studies
- improved chances of clinical success

- faster speed
- lower cost
- - broader molecular diversity
 - less animals in preclinical studies

Need for transversality & interface



« All models are wrong but some are useful. » G. Box

simplicity

interpretability

robustness

reproducibility

Acknowledgement

ALL COLLABORATORS FROM

GENOPOLE

MERCK-SERONO

LIGUE CONTRE LE CANCER

PHARNEXT

SERVIER

NANOBIOTIX

INSA

ENSAI

STATOMIQUE

Thank you !